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EDITOR'S NOTE , 

With the exception of certain trigonometric and hyperbolic func- 
. tions, Soviet mathematicql symbols are the same as those encounte 
in the American literature. For the reader's convenience a list of 
exceptions and their American equivalents is given below. 
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NASA TT F-12,362 

*THREE-DIMENSIONAL SUPERSONIC GAS FLOW ACCOMPANIED 
BY NONEC$UILIBRIUM PROCESSES 

0. N. Katskova and P. I. Chusbkin 
(Moscow) 

Several difference schemes [l-41 for numerical solution of three-dimensional 
supersonic gas-dynamic problems have been developed in recent years and used . 
in various applications. These are based on the use of the characteristic com- 
patibility relations. Among these schemes, an especially simple one is the 

* numerical scheme of the semi-characteristic type [l], in which one independent 
variable associated with the transverse flow is excluded by means of appropriate 
approximations and the problem is in fact reduced to integration of a two- 
dimensional hyperbolic system of equations. In the article I l l ,  such a semi- 
characteristic scheme was developed for  calculation of three-dimensional super- 
sonic equilibrium gas flow about a body located at the angle of attack. The appli- 
cation of this scheme both,to blunted bodies [5] and to bodies incorporating a 
channel [6] of sufficiently smooth form has pointed to its efficiency. This semi- 
characteristic scheme was generalized [7] (see also [SI) to the case of three- 
dimensional gas flow s accompanied by nonequilibrium physical and chemical 
processes. In the present article the computational algorithms of that scheme 
are given in detail for such case, in particular, to its application for numerical 
solution of supersonic flow of nonequilibrium dissociating oxygen in a nonaxisym- 
metric nozzle. 

/1049* - 

1. The system of equations for nonequilibrium gas flows 

We take the general equations of gasdynamics (the equation of continuity, the 
equation of conservation of momentum, and the equation of conservation of energy) 
for steady-state three-dimensional flow of a nonviscous, thermally nonconducting gas 

where V is the velocity vector, p is the pressure, p is the density, and h is the 
specific enthalpy. I 

As is known [9, lo], the course of nonequilibrium physicachemical proemses 
in a gas can be described by the variation of certain parameters ci (for i = 1, 2, 
. . . , m), which can be, for example, the energies of the internal degrees of free- 
dom, the mass concentrations, etc . Other governing physical parameters are 
the pressure p and the temperature T of'the translational degrees of freedom of 
one of the components. Then, the equation of state and the expression for the 

~ 0 5 0  
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The starting system of equations is completed by the equations for the para- 
meters ci, which are the to'tal derivatives with respect to time 

The right-hand members of these equations have the following structure: 

. or, in the more general ca,se, they consist of several terms of this form. Here, 
the function 'pi is proportional to the rate of the physicochemical process. For 

/ 1050 a flow with llfrozen in" reactions, (I?. = 0. For a flow with equilibrium reactions, -- 
-00 and, in this case, f, = 0. The specific form of (1.3) and that of (1.2) is 

determined by the physical and the chemical kinetics. 

We shall use dimensionless variables, taking as the characteristic quan- , tities some linear dimension, the velocity V, and density boo of the unperturbed - 
flow, and the gas constant. The characteristic qubtities for the parameters c 
are  chosen in accordance with their physical meaning. 

1 

"pi 1 

- 

I 

In solving the problems of the flow of a gas, we shall confine ourselves (for 
simplicity) to non-axisymmetric bodies, the cross-sections of which do not 
differ greatly from ellipses, and which possess one plane of symmetry parallel 
to the unperturbed flow. In this case, it is convenient to use the coordinates x, 
E, 11, with the x-axis passing through the body in the longitudinal direction (for 
a body of rotation, it coincides with the axis of rotation), the surface E = constant 
are elliptic, and the surfaces q = const are hyperbolic. In the problem of a flow 
around a body at the angle of attack, we may assume that the value r l =  0 cor- 
responds to the windward side and 11 = 3t to the leeward. 

On this system of equations we impose definite boundary conditions. Suppose 
that the region of flow has boundary surfaces E = "Sl, (e, 71) and E = :ST (z, q). In the 
case of external flow around the body, the first surface is the shock wave and the 
second is the surface of the body. On the other hand, in the case of internal 
flow in the nozzle, these surfaces will be, respectively, the wall of the nozzle 
and ita axis, or the surface, of the internal profiled body (for an annular nozzle). 

If the boundary is an impenetrable wall g = gT (i, 6) , then the normal velocity 
on it vanishes, which yields the condition 

" L  

where u, v, and w denote the components of the velocity along the XI, E-, and 
, q-axes respectively. 
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On the othe c hand, i f  the boundary is a shock wave, the gasdynamic condi- 

is an infinitely ! hin surface'; therefore, the parameters ci describing the physi- 
tions existing o a sharp discontinuity must be satisfied on it A shock wave 

cochemical processes stay. constant upon traversal of that front Consequently, 
the values of the gasdynamic functions immediately behind the shock wave will, 
in nonequilibrium flow, be :found in the same way as in the case of flow with 
"frozen in" reactions. In the case of uniform supersonic (Mach Mw) flow around 
a body, where the angle of incidence a to the x-axis is the angle of attack, these 
values are expressed by the formsilas 

P = pa + hp, A p  = ( 1 - $) Vnw2, I 
I 

sh&sinq A p  -- ch5cosq Ap 
%n& E l  

+T, w ='sin a 
II 

u = - sin a 

where the Lam6 parameter (half the focal distance'is taken as the characteristic 
linear dimension) is equal to Ii = (sb2 + sin2q)'C and the component of velocity of 
unperturbed flow normal to the shock wave is 

where 
__ . - - _ _  . - - - ____ .- . _. _____ _____ -. - 

ch & cos q sb E sin q 
6 = &ad cos a + -- sin a f' --- gnnf sin a. 

- _ _  H €I 

In the non-equilibrium case, it is necessary to take into account (1.2) which, 
generally speaking, are complex even for constant parameters ci on the shock 
wave. Therefore, dete-mination of the functions from (1.6) for given values of 

. the derivatives En%' and En,-,' necessitates the use of iteration. For example, we 
may use Newton's method and carry out the iterations with respect to the quantity 
p, solving the first three equations in (1.6), as well as (1.2), and finding as a 
result the values of p, h, T, and p . 

1 

In the calculation of the supersonic flow, the initial values of the basic 

In the investigat "frozen inf1 

unknown functions on some space-type surface must also be given, 

sound velocity 

(1.7) 

3 



where the prime denotes the partial derivative with respect to the variable 
indicated by the subscript. At supersonic velocity, the system of equations 
(1.1) -(1.3) will be hyperbolic. Then, at every point of the three-dimensional 
flow region there will exist a one-parameter family of characteristic surfaces, 
the envelope of which is the characteristic conoid. The characteristic surfaces 
are determined by those terms in (1. l)? that contain partial derivatives. There- 
fore, their equations will he identical in the equilibrium and nonequilibrium cases. 

Of course, there will he certain differences in the characteristic compatibi- 
lity relations. Let us .consider, at a given point, the charaoteristic plane with 
a unit external normal n tangent to the conoid. By using the work of Ell], we can 
obtain, in the case of steady-state nonequilibrium flow, the characteristic corn- 
patibility relation in the form 

pa&ds,V - lPzds,p t paAlds,V - B&p Ji. On(st X 82) .  . 

/lo52 - 

, 

-- __ - -. -. . - - 
1 . I_- - . __ . - .- 

Here, 

and sl and s2 are two independent vectors lying in the characteristic plane under 
. consideration. I 

The streamline is an (m + 3) triple characteristic. Along it, there hold m 
equations (1.3) describing tpe physicochemical transformations. Furthermore, 
the Bernoulli equation tn / 2 + h = const and the equation of energy in (1.1) are 
satisfied on a streamline that equation of energy can, by virtue of (1.2), be trans- 
formed to 

I 
_ _  __ . .  - _  
dT +- gap + qdl = 0, (1 8) 

where - 1  

These characteristic , relations enable us to construct various numerical 
schemes of the three-dimensional method of characteristics for calculating three- 
dimensional supersonic nonequilibrium flows and, in particular, to generalize 
schemes l2-43 to this case. However, as already noted, we shall construct here 
a numerical scheme by use of two-dimensional characteristic relationships. We 
shall begin by reducing the !nitial system. of equations to a r~yskm with two hde- 
pendent variables. . '  
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2. The approximating system of equations 

From the system of equations (1.1) -(1.3), which have three variables, we 
derive the approximating two-dimensional system. First of all, we transform 
the equation of continuity in (1.1) with the aid of the other equations of the sys- 
tem as follows: 

pa2VV + V V p  + Q = 0. (2 1) 

Then, (2.1) , the equation of momentum in (1.1) , the equation of energy {I. 8), 
and the kinetic equations (1 .t3) become the initial three-dimensional equations for 
the functions V, p, T, and ci. 

To rectify the region of'flow bounded by surfaces 6 = ET(x, q) and E = EIt(z, q),-- 
we introduce the normalized variable 6 = (2 - ET)&-', in place of e ;  here = En - kT. . 
Let us write the equations enumerated above in terms of the variables z,4, q. BO53 

I 

We now eliminate from'these equations the variable q, by using in the region 
OG 1'1 < x the trigonometric jnterpolational polynomials in which the interpolational 
nodes are the surfaces q = q h  = lcn / I  (for k = 0, 1, . . , 1). For an odd function 
w and even functions $, we take respectively the approximations 

I---- 
_ _  - . - . .- - 

I 1  
' I O  I 

1-1 I-i , 

From these we determine the derivatives 

I 
Here, the subscripts in %he expressions for the functions and the derivatives indi- 
cate values relating to the corresponding surface = const. The numerical coef- 
ficients c and- d are found from the formulas 

kj kj 
- -  - - - - -- * _ _  -I- 

CAj = 21-' Sin kgjt dhj = 21-' COS ILqj, 
1 

When k = 0 and when k = 1, we peed to replace factor 2 in the formula for d 
factor 1 at 0 < j < 1, and by factor 1/2 at j = 0 and j = 1. One can also easily cal- 
culate the numerica1,coefficients "and f . for l = 2, 3, 4. All these coefficients 
are given in [l]. 

by kj 

% kJ 

Thus, with the aid of the representations (2 2), we obtain a two-dimensional 
approgmating system whose form q = rli, on each surface of interpolation (hence- 
forth we shall, f'pr s ity, drop the subscript @ is 
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. w au * w aw ' 1 a p  
@,I=-u(zu-~w) +-- +-- 

, I? dq' . II all lip all' 
cD3- W(TU-(JW) +--- 

w aci, 

H a4. TJVi = -- 
/ 1054 

All equations of this form for the various surfaces of interpolation are  - 
related through the derivatives with respect to v; the latter appear in the quanti- 
ties ai and are  determined by (2.3) . In general, the approximating system will  
consist of (m f 5) (1 + 1) - 2 equations in x and 6 for the corresponding number of 
values of functions,of all surfaces q = qk that are being considered. 

In the region in which u2 + ( u  + p ~ i ) ~ ( l &  p2)-l >a2, the thus generated appro- 
ximating system is hyperbolic. This system has two families of characteristics 
with 

_ _ _  ___ \ 

On characteristics of $he first family (i =f 1) and on those of the second family 
(i = 2), one must satisfy the following relations 

-I_-- 
__ - 

dS+K (2 5) 

In (2.4) and (21 5), we introduced the notation 
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The approximating system also incorporates a family of analogues of the 
streamlines, determined by 

I 

I 

Along these "streamlines, 1' 

where 

and g has the same meaging as in (1.8) . Note that the first two relations of (2.7) 
can yield an analogue of Bernoulli's equation.. 

11055 - 

3 .  Computational algorithms of the method of characteristics 

To integrate the appro;rFimating system, we apply the numerical scheme of the 
method of characteristics in which the solution is constructed on successive layers, 
namely, the planes x = const. On each such plane, we consider a difference grid 
with nodes formed by the intersection of the surfaces q = qk (for k = 0, 1, . . . , 1) 
and the surfaces O-= 6, (for n = 0, 1, . ; ., n) . From these nodes, we draw the 
characteristics and the "streamlines1' in the upstream direction along the flow, 
until they meet the previous layer, where all the gasdynamic functions are  already 
known. The compatibility relationships represented in finite-difference form 
along these curves enable us to determine the desired functions at the nodal points 
of the new layer, 

I 
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Such a numerical scheme of the inverse type has some advantages over 
the classical scheme of the, method of characteristics, in which the characteria- 
tics are drawn in the downstream direction along the flow.. In the scheme of 
the inverse type, the nodes are located at prefixed points, which is convenient 
from the practical point of view and it makes it possible to fairly simply relo- 
cate the nodes uring the course of solution. 7 

This last p int is especially important in the calculation of nonequilibrium 

cesses take place in a narrow zone adjacent to the shock wave and characterized 
by large gradients. To achieve accurate results in this zone it is necessary to 
establish a larger number of nodes than in the remaining region. However, the 
conditions of numerical stability then also require us to establish more layers 
x = const. In the characteristic scheme of the inverse type, where all the points 
with common value 6 = 6, are calculated independently of the other points, this 
number of layers needs to be increased only in the narrow zone indicated above, 
and not over the entire flow. This causes a considerable economy in machine 
time. We note that, in numerical methods where the sweep is applied in the 
region between the body and the shock wave, such a convenient procedure is 
impossible. 

flows when, in P mall characteristic periods of time, the physicochemical pro- 

In a numerical scheme that uses the characteristic relations as difference 
relationships, the number of variables from which the approximate finite- 
difference representation of the equations is made decreases by 1. The semi- 
characteristic scheme developed above differs in its notable simplicity which is 
due to the reduction of the three-dimensional problem to a two-dimensional one. 
The present scheme is implicit and can be of second-order accuracy, which 
facilitates the achievement of stability and increases the efficiency of the scheme. 
We shall now give the computational algorithms that are used in this scheme for 
nodes of various types. Because of the implicitness of the scheme, the numeri- 
cal procedure includes an iterational process. In each individual iteration, a 
given algorithm is used to calculate simultaneously all 1 + 1 nodes having the 
same coordinates 0 and lying on different surfaces rl = qk. The calculations are 
similar for each surface q = 

single surface. 

/lo56 

Therefore, we shall describe them only for a 'k 

In the determination of the functions at a new interior point 0 lying on the 
layer x = x. 4- Ax, the characteristics of the first and second families (2.4) and 
the "streamline" (2.6) are ,drawn from it. They intersect the preceding layer 
x = x. at the points 1, 2, and 3,  respectively, whose coordinates are 

At these points we can, with the aid of interpolations with respect to one variable, 
find the values of u, v, w, p, T, and ci, which we shall indicate by the correspond- 
ing numerical subscripts. Then, we shall represent in finite difference the com- 
patibility relations (2.5) along the characteristics and the relations (2.7) along the 
?%itreamlines .?* . ,  

. I  
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Solving the equations thus obtained, we obtain the following computational 
algorithm: 

From these equations we calculate one after the other all the basic functions at 
the new nodal 0. Here, we must use the equation of state, the expression for 
the enthalpy (1.2), and the formula for the velocity of sound (1.7) . 

The coefficients of (2.9-(2.7) that appear in (3.1) are averaged over the 
points 0 and 1, 0 and 2, and 0 and 3, respectively. The derivatives with respect 
to q, which are contained in the quantities cP, are calculated from (2.3). We 
note that these derivatives, as well as the coefficients Ai, are found in the first 
iteration from the values of the functions at the point 4 on the layer x = xk, at 
which point 6 4  = 60. 

Averaging of all coefficients is done according to the general f o b u l a  

I 

I 

IC,, = s&J + (1 - s)&, (3 2) I 
where s is a wejghting parameter. We shall address ourselves later to the 
choice of this parameter. I 

and the 

For all 
remain 

If the point 0 to be calculated is on a solid wall, then the compatibility rela- 
tion (2.5) is computed only lalong the characteristic of the second family 0-2 and 
we also use the condition of impenetrability (1.5) . , In this case, the.pressure po 

quantity go are calcplated from the expressions 

/LO57 

I - -  -. -~ - - - 

the remaining funct$ons, the corresponding equations of the system (3.1) 
valid. 

Finally, let us look at the determination of a new point 0 on a shock wave. 
Here,- the solution consists primarily of finding the derivative zkx. When we have 

1 some value for at the point 0 and take the value of from the preceding 
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layer (it remains constant in the course of the first iteration), we can use for- 
mulas (1.6) to find all functions at the point 0. Let us calculate the coordinate 
of the shock wave SB, using the adjacent wave point 4 on the layer x = x We 
have, specifically, ' 

Now from the point 0, we draw the characteristic of the first family, inter- 
secting the layer x = xI at point 1. By virtue of the satisfaction of the compati- 
bility relation along this characteristic 

* 

CO - Gt +  PO - pi) + L A X  = 0 * 

a check of the given quantity 5iz is made, and its proper value is fitted with the 
.necessary degree of accuracy. After the first iteration for the entire new layer 
from the values obtained for EBo at various q = qk, we find, by means of (2.3), 
the derivative E;,,, which is used in the next iteration. 

Here, the Courant-Friedrichs-Levy stability condition can be satisfied by an 
appropriate choice of steps and method of interpolation on the preceding layer. 
However, the given characteristic numerical scheme is nonsimplicial. There- 
fore, it must be checked for Neumann's stability criterion. For this scheme, 
such an investigation of stability was made by Yu. Ya, Mikhayalov on the Iinea- 
rized equations of gasdynamics. He has shown that the value of the weighting para- 
meter s = 0.5 in (3.2) foi  averaging of the coefficients (that is, in the case in 
which the scheme has second-order accuracy) corresponds to the stability limit 
in the sense of Neumann. Consequently, to create a margin of stability, we 
need to use a somewhat larger value of the weighting parameter, for example, 
s = 0 . 6 ,  which decreases the order of accuracy of the scheme only to an insig- 
nificant extent in comparison with the second order of accuracy. 

Let us now pause briefly to look at the stability of the numerical scheme. 
. 

It is well known that in the calculation of flows with nonequilibrium physical- 
chemical processes, difficulties arise in those regions where the parameters of 
the flow are close to equilibrium. Here, the stability of the calculations deteri- 
orates because, under equilibrium conditions, "pi +- 00 and fi -+ 0 in the kinetic 
equation (1.3) . In this case, the application of explicit schemes for numerical 
integration becomes practically impossible because they require an exceptionally 
small computational step. Implicit schemes which use the behavior of the kinetic 
equations near the equilibrium enable us to remove this difficulty. In [9, 10, 12, 
131, effective numerical schemes were also proposed for calculating two- 
dimensional gas flows accompanied by fast nonequilibrium processes. 

I .  

b o 5 8  - 

An analogous scheme of the implicit type was used to solve the present tbree- 
dimensional problem. This scheme is based on the representation of the function 
fi by two terms of the sepes with respect to the same parameter c which ap- 

proaches the equilibrium value. As a result, to calculate this. parameter c. at 
the point 0, we obtain the following difference formula: 

jy  

J 
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where the asterisk subscript means that, in the calculation of the corresponding 
function, the independent variables p, T, and ci (for i # j) a r e  taken at the point 
0 in question and the parameter c. is taken at the preceding point 3 on the stream- 
line. At s = 0.5 this difference formula is of second-order accuracy and enables 
us to calculate -in a unique way the gas flow in regions both near and far from the 
equilibrium-. Thus, this general formula should be applied in (3 .l) instead of 
the last formula, which is not suitable for calculating nonequilibrium processes 
with very small characteristic times. 

1 

. .  L . . . .  . _ _ I . . j  . - . _  . . _ .  
4. Supersonic flow in nonaxisymmetric nozzle 

The numerical method that we have developed was applied to the solution of 
the specific problem of calculating the nonequilibrium three-dimensional super- 
sonic flow of a gas in a nonaxisymmetric annular nozzle. 

The outer wall of this nozzle was a cylinder of elliptical cross-section with 
semi-axis ratio a/b = 1.5 d d  with a = 50 cm. The intenpal body in the nozzle 
has the following geometry. In the plane of symmetry, in which the major semi- 
a;b,s a lies, the contour of the interior body is a part of the iJoukowski profile 
and is given by equations in1 parametric form 

z = A ( r + i t / r )  cosy-SO,  y = A ( r - l / r )  siny,!  
where 

r =  -qcosy+  ( 1 + 2 & + e ~ e o s 2 y ) 1 ~ ~ ,  

and the x-axis coincides with the axis of the nozzle. We assumed a profile for 
which A = 167, e = 0.125, $nd the quantity xo is such that, in the initial section 
of the nozzle (x = 0), the tangent to the profile is parallel to the axis of the nozzle. 

The cross. sections of the internal body in every plane x = const are ellipses 
with the same focal distance and the same major semi-axis, equal to the coordi- 
nate y(x) of the chosen Joukowski profile. In the initial plane x = 0, the cross- 
section of the internal body is an ellipse'with the same ratio a/k, = 1.5 as in the 
external cylindrical tube. It is with just this ellipse that the variables E and 71 

its focal distance 6-= 36.2 c!m. For this 
refer the values 11 = 0" and 31 = 90" to the 

'and major semiaxes lie respectively. In this coordinate system, the cross- 
section of the interior body is, in every plane x = const, determined by F; = F;(x) = 
= const. In particular, the annular cross-section degenerates to a straight line 
segment ,(E = 0) 

11 

__ for the entire region of flow are connected, and the linear r ults apply to hdf - . 

anh-l(b/a). We 4059 - 
-. in which the minor 



Calculations of the three-dimensional flow in an annular non-.axisymmetric 
nozzle were made, just as in [9, 101 in the axisymmetric dase, for oxygen in 
nonequilibrium dissociation when there are equilibrially excited translational, 
rotational, and vibrational degrees of freedom and when there are no excited 
electronic levels and no ionization. Then, the role of the nonequilibrium para- 
meter will be played by the degree of dissociation, that is, the ratio of the mass 
of atomic oxygen to its entire mass. All equations related with the physical 
kinetics are borrowed from [lo]. 

The equation of state and the expression for the enthalpy (1.2) for a diatromic 
gas is taken in the dimensionless form 

The functions cp and f in (1.4), the product of which constitutes the right side of 
an equation for the degree of dissociation of the type (1.3), have the form 

(4.2) 

Equations (4.1) and (4.2) have the following dimensionless parameters, which are . 
combinations of the dimensional quantities 
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Here, the physical constants have the following meanings: R is the gas con- 
stant of the undissociated gas, 1.1 is the atomic weight; Tv is the characteristic 
vibrational temperature, TD is a constant proportional to the energy of dissocia- 
tion of the molecule,, pD is a constant with the dimensions of density, 
are the constants of speed of recombination in the case of a triple collision, and, 
in particular, ItRi = IcT-f. For oxygen, these constants were taken as follows: 
R = 2.6 10 cm /sec deg, -p = 16 g/g-mole, Tv = 2256" K, TD = 59,370" K, 

kR1 and%2 

6 2 2  

18 6 2 = 1540 g/cm3, k = 4.8 10 cm deg/sec-g-mole , Glh2  = 3, and 1 = 1. PD 

Let us give some results of calculations of supersonic flow of nonequilibrially 
dissociating oxygen in a nozzle of the given form. The flow at the entrance sec- 
tion of the nozzle had Mach number M, = 1 . 2  and temperature T, = 5000" K, and 
the value of the pressure p, varied from one variant to another. The graphs ' 

given below show the distribution of a number of physical parameters on the 
inner surface of an elliptic t'pbe bounding the nozzle from the outside. To estii- 
mate the accuracy of the numerical solution, calculations were made with a 
different number of terms in the approximating trigonometric polynomials (2.2) . 
Accordingly, in the region Oo< q < 180°, we took five and nine surfaces of inter- 
polation q = const. The data found for the first case-is indicated on the graphs 
by circles, that for the second by curves. In all calculations, we  considered 25 
nodes on each surface q = const. 

The results of the calculations by use of. approximating polynomials of various 
orders are  shown in Figs. 2-4. Here, the pressure was taken equal to p, = 10 atm. 
Figure 2 shows the distribution of the degree of dissociation c and of the relative 
temperature TJT, along two generators of the nozzle lying in the planes of symme- 

I try q = 0" and q = 90". The'dependence of the relative pressure p/pm on the coor- 
dinate q for a number of values x = const is shown by the solid curve in Fig. 3. 

+. As one can see, the accuraqy in the determination of the degree of dissociation, 
- temperature, and pressure is good even when there are only a' small number of 

- _  - - -  . . . - __ - - - __ -. __ - - - - - - - 

.? I 

' 

surfaces of interpolation. 

* However, ig three-dimensional flows, the circular component of the velocity 
w is a more sensitive function, in the sense of accuracy of numerical solution. 
The change in t 's quantity along the generator of the nozzle q = 45" is shown in 

. turns out that, for large distances x, five surfaces of interpolation q = const are 
not enough for satisfactory determination of the angular velocity w . 

It is of interest'to juxtapose nonequilibri&n flow of oqgen in a nozzle with 
the corresponding limiting flows that is, with equilibrium dissociation and ''frozen 

Fig. 4, which shows hi the data calculated at a-different degree of accuracy. It 
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' in" dissociation. This comparison is made in Figs. 5-7. The results, pertain- 
ing to the nonequilibrium, equilibrium, and "frozen-in" cases are shown by the 
solid, short-and-long-dash, and medium-dash curves respectively. In all these 4062 
cases, the incident flow had the same pressure p, (namely, 1 atm) and the same 
velocity Vm,. Here, for the equilibrium flow, the Mach number M,, calculated 
from the equilibrium velocity of sound, was equal to M, = 1.316. 

The distribution of the degree of dissociation c along the length of the nozzle 
for q = 0" and q = 90" is shown in Fig. 5. In the nonaxisymmetric nozzle under 
consideration, the nature of the change of this quantity is the same as in an 
axisymmetric nozzle. In the initial region, the curves representing the degree 
of dissociation in a nonequilibrium process are close to the curves representing 
an equilibrium dependence. In further sections, the flow deviates from an equi- 
librium state and becomes "frozen-in" rather rapidly. Here, the degree of dis- 
sociation remains virtually constant, though not the same, for the different 
surfaces q = const. 

' 

. 

The graphs shown in Figs. 6 @nd 7 give the change in the temperature TJT, 
and the Mach number M along the outer wall of the nozzle for the three types of 
flow mentioned above. Furthermore, Fig. 3 shows (the dashed curves) the dis- 
tribution of the pressure in the "frozen-in" case. These numerical results 
emphasize that analysis of the nonequilibrium dissociation, with finite rates of 
this process, is of significance and that it influences most of all the temperature 
of the flow. 
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